Transcription-coupled deposition of histone modifications during MHC class II gene activation
نویسندگان
چکیده
Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5' end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.
منابع مشابه
Multiple Histone Methyl and Acetyltransferase Complex Components Bind the HLA-DRA Gene
Major histocompatibility complex class II (MHC-II) genes are fundamental components that contribute to adaptive immune responses. While characterization of the chromatin features at the core promoter region of these genes has been studied, the scope of histone modifications and the modifying factors responsible for activation of these genes are less well defined. Using the MHC-II gene HLA-DRA a...
متن کاملCoordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A
The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocompatibility Class II (MHC II) DRA gene in a way independent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that c...
متن کاملX box-like sequences in the MHC class II region maintain regulatory function.
Sequences homologous to the canonical MHC class II (MHC-II) gene X box regulatory elements were identified within the HLA-DR subregion of the human MHC and termed X box-like (XL) sequences. Several XL box sequences were found to bind the MHC class II-specific transcription factors regulatory factor X and CIITA and were transcriptionally active. The histone code associated with the XL boxes and ...
متن کاملInterplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression.
Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-gamma. IFN-gamma activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT...
متن کاملEpigenetic regulation during B cell differentiation controls CIITA promoter accessibility.
B cell to plasma cell maturation is marked by the loss of MHC class II expression. This loss is due to the silencing of the MHC class II transcriptional coactivator CIITA. In this study, experiments to identify the molecular mechanism responsible for CIITA silencing were conducted. CIITA is expressed from four promoters in humans, of which promoter III (pIII) controls the majority of B cell-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007